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Abstract-A numerical model of the melting of small particles entered in a free DC plasma jet was studied to 
predict the optimal parameters ofplasma spraying. The equation of motion for the solid/liquid interface inside 
a particle passing through a plasma jet was determined and its numerical solution was given in some special 
cases. The strong temperature and velocity variation inside the plasmajet and the temperature dependence of 

the plasma parameters were taken into account. 

1. INTRODUCTION 

IN THE use ofplasma spraying the basic condition is that 
the particles become fully molten but not overheated 
during their flight. In such cases the powder particles 
can be spread on the substrate and the porosity of the 
coated deposit is low. Therefore it is important to know 
the conditions of full melting of a particle in plasma. 

One possibility to take into account these conditions 
is to suppose that the thermal conductivity of powder 
grains is so high that the temperature gradient inside 
the particles can be neglected [l-5]. According to 
Houben [S] this assumption can be used when 

Eln 
[ 1 q--T, q-T, > 0.9 

% 
(1) 

where K and icg are the thermal conductivity of the 
powder and the plasma, Tg and T, are the temperatures 
of the plasma and the powder surface, respectively, and 
T, is the room temperature. This connection is not 
satisfied, however, for many materials (e.g. Al,O,). 

Another possibility is the numerical determination of 
the temperature distribution, T(r, t), inside the particle 
using the finite-difference method [6-83 

In practical plasma spraying one does not need to 
know the complete temperature function, T(r, t), it is 
enough to know the time-dependent position of the 
phase boundary, q(t)and the temperature at the particle 
surface, T,(t) during the dwell time. The surface tem- 
perature of the particles can even be measured [9, lo], 
so that the calculated results can be compared to the 
measured values. 

In this paper we give the equations of the phase 
boundary position, q(t), the particle surface tempera- 
ture and their numerical solutions for some cases 
because this way seems to be simpler than the 
computation of T(r, t) inside the particle. 

In order to describe the melting of particles we have 
to know the temperature and velocity distribution in 
the plasma jet, because knowing them the motion of 
powder grains and the plasma temperature seen by the 
particle can be determined as a function of time. In this 
paper the description of the particle motion is given by 
taking into account the dependence of the temperature 

and velocity on position and of the viscosity and density 
on temperature. Scott and Cannel [ll] made 
calculations with similar conditions for the particle 
motion in plasma. 

2. EQUATION OF POSITION OF 
PHASE BOUNDARY 

2.1. Constant heat transfer coejbient 
We have used the following assumptions : 

(i) The effect of convection as a heat transfer 
process in the liquid phase is neglected. 

(ii) The particles have spherical symmetry. 
(iii) The material constants of powder grains 

(C,, p, K) can be represented by their mean 
values. 

The temperat~e dist~bution within the particle is 
governed by the equation 

pc,;-+-)=O (2) 

with the boundary condition due to the heat balance 
equation at the particle surface, i.e. 

where c( is the heat transfer coefficient and T,(t) is the 
temperature experienced by the particle. 

The symmetry condition in the centre of a particle 
can be written as 

8T 

8r ,=0= 
0. 

Another boundary condition is due to the heat balance 
at the moving solid~iquid interface and can be written 
in the form : 

aT aT 

“z- r=q(t)-O-Kar r=9(r)+o 

= &+(t--fo) (5) 

where L is the latent heat of fusion, e(x) the Heaviside 
function and to is the time when the surface temperature 
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CD drag coefficient 

CP specific heat 
D diameter of powder grain 
F non-dimensional temperature 

F, non-dimensional gas temperature 
L latent heat of fusion 

% mass of particle 
Nl4 Nusselt number 
Pr Prandtl number 

4 heat flux 
r radial coordinate 

r. radii of particle 
Re Reynolds number 
t time 
T temperature 
x’ non-dimensional radial coordinate, r/r0 

NOMENCLATURE 

Z cylindrical coordinate. 

Greek symbols 

; 

heat transfer coefficient 
non-dimensional solid/liquid interface, 

v(tYr0 

q(t) solid/liquid interface position 
p(T) viscosity 
K thermal conductivity 
p density 
‘5 non-dimensional time, t * KlpC,ri. 

Subscripts 

g gas 
S surface 
r room. 

of the particle has just reached the melting point, i.e. 

T(ro, to) = T,. (6) 

Finally, the temperature at the solid/liquid interface is 
equal to the melting point, i.e. 

T(rl(t)> t) = T,. (7) 

The heat transfer equation (2) and the boundary 
condition (5) can be written in a single equation 
introducing a heat source by the definition 

dn 
q = Lp - f3(t - t,)6(r -q(t)) 

dt 
(8) 

where 6 is the Dirac 6 function. With the use of this 
expression, equations (2) and (5) can be written as 

pC,g--F$(rT)=q. 

Let us introduce the dimensionless variables 

x=r 
r. 

ix 
r=2 

pC,r0 

B(T) = $ (12) 

F,(z) = 2 (T(t) - TJ 

F,=?(T,--T,) 

F’(x, z) = 2 (T(r, t)- TAX 

and the Nusselt number 

Nn=C(r,. 
K 

(13) 

(14) 

(15) 

(16) 

Using these quantities the equations (3), (4), (6) and (7) 
get the following forms : 

g - g fl(T-z,)x E 6(x--/l(r)) (17) 

:=(I-Nu)F’+NuF,(r)l,., (18) 

F'(0, 7) = 0 (19) 

F’(1, ro) = 0 (20) 

F’@(z), r) = 0. (21) 

To solve these equations let us suppose the solution in 
the form 

F’ = F + Nu Fo(?)f(x) 

where f(x) is defined by 

(22) 

(1-&-x)2 

2~-(1-Nu)e~ 
if x>l-e 

f(x) = 

1 
0 if O<x<l-a 

(23) 

This function is shown in Fig. 1. Ife << 1 then f (1) m e/2. 

‘1 ‘/ii 
0 1-E 

0 1-E lx 

FIG. 1. The f(x) and d’f /dx2 functions (see text). 
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The second derivative of f(x) is given by 

2 1 
x- if x>l--E 

$ = 2&-(1-N14)&Z E 

i 0 if O<x<l-s. 

It can be seen that f(x) << d’f /dx’ ifs << 1. Substituting 
F’ into (17)-(19) we get 

+Nu F, $ = G(x, r) (24) 

; = (l-Nu)Fl,,, (25) 

F(0, r) = 0 (26) 

Using the complete orthonormal system 

~Jx)=sink~x*(~01sin2~~xdx)1’2. (27) 
FIG. 2. The solution of the transcendent equation (29). 

F can be given by following integro-differential equation : 

F(x, 4 = f ‘XWM. 
n=O 

(28) ’ s Fb, 0)4x, /W, 4 dx 
0 

Because of the boundary conditions (25) and (26), k, 
satisfies the equation 

& k, = tan (k,), (29) + ‘Nu F,(t)A(l, /3(t), 7-t) dt = 0. r (35) 
Jo 

the graphic solution of which is shown in Fig. 2. 
Multiplying equation (24) by U,(x) and integrating On the basis of equations (28) and (31) the surface 

between 0 and 1 and taking E + 0 we get the following temperature is given by 
equation for C(Z), 

den 
dt + k,2C, = ‘Yr - ro)P(r) g u.@(r)) 

F(l, t) = 
J 

F(x, 0).4(x, 1, Z) dx 
0 

mdr,ro) 

+NuF,(r)u,(l) = G,(z). (30) 
+ 

I TO 
B(t) $ NW), 1, r-t) dt 

Its solution is 

C,(r) = {C”(0)+~;G~(t)e+drje-‘:.. (31) +J’NuFO(t)A(l’ l’r-t)dt (36) 
7. can be determined from the implicit equation, 

where C,(O) can be determined from the initial 
condition. If T(r, 0) = T, then 

F(l, r,,) = 0. 

5 

1 

C"(O) = F(x, O)U,(x) dx = - Fn N” - ~(1). (32) 
2.2. Temperature-dependent heat transfer coeflcient 

0 k,2 
In the previous section the heat transfer coefficient, CI, 

was supposed to be constant but a usually depends 
Using (28) and (31) we get F(x, t) as a function of /I(t) strongly on the plasma temperature. The integrated 
which can be given by using condition (21) as thermal conductivity of the plasma gas Es is defined by 

“go ~“(8(W”(~) = 0. s =, 
I?* = (T,-7J-’ @‘7 dT 

T. 
Introducing the quantity 

A(x, x0, t) = f V,(x)U,(x,) e-@ 
w=o 

Ranz and Marshall [lo] give the following approxim- 
ation for a 

(34) 
a = 1?,(2 + 0.6Re’/2 Pr’/3)/2ro. 

and using equation (31), equation (33) leads to the If the Reynolds number is not too high, then a = ‘Eg/ro 
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FIG. 3. The Nusselt number as a function of plasma 
temperature for alumina particles in an Ar-H, plasma. 

so the Nusselt number 

Using the data given in the literature [14, 151 the 
connection between Nw and the plasma temperature, T* 
for alumina particles in Ar-H, plasma is shown in Fig. 
3. These values of the Nusselt number were used in the 
numerical calculations discussed in Section 3. Taking 
into account that the heat transfer coefficient depends 
on temperature, cc(7”) can be approximated by a step 
function Z(T,). In the intervals where the step function is 
constant equation (35) remains still valid with 
exchanging the variables F(x, 0) -+ F(x, z,) and tak- 
ing z,, -+ max {zO, z,} where z, is the time moment 
of the discontinuity of @(T,(z)). The denotation 
z,, -+ max {t,,, z,} means that z,, must be exchanged by 
the maximum value element of the set {r,, z,}. So equa- 
tion (35) is given in each interval z,, < z < z,+ 1 by 

5 

1 

W LMX, BC$, z> dx 
0 

The index n denotes the intervals where the value of the 
Nusselt number is Nu,. The surface temperature 
distribution is then given by 

s 

1 

F(X,T) = %,x,)4x, xo, ~)dxo 
0 

s 

maxhhro) 

+ 
max(hr.1 

B(t) $ A,(x, LW), T--t) dt 

+ 
s 
' Nu,F,(t)A,(x, 1, z-t) dt (38) 
r” 

where /3(z) has to be calculated from equation (37). 

3. NUMERICAL RESULTS 

3.1. Plasma parameters 
In the numerical calculations the melting of the 

particles was investigated by using the temperature and 

20 
t T- 1000 K/N------ 

PLASMA JET AXIS (mm1 

Cb) 

PLASMA JET AXIS (mm) 

FIG. 4. Temperature (a) and axial velocity (b) isocontours 
of an argon hydrogen DC plasma jet at P-=‘i9 kW, D,, = 

75 N1 min-‘, DH1 = 37 Nl min-‘. 

IO) 

velocity distribution in an Ar-H, plasma jet measured 
by Vardelle et al. [7] (Fig. 4). The power of the plasma 
generator was 29 kW with a flow rate of 75 Nl min- ’ of 
Ar and of 37 Nl min- i of H,. The dependence of the 
viscosity of the Ar-H, plasma on temperature was 
approximated between 2ooO and 12000 K by an 
analytical function using the data given in ref. [ 141: 

v(T) = v. ew 

where T,, T2, go and a are constants (Fig. 5). 

3.2. The motion ofthe particles 
The equation of particle motion in plasma has the 

following form according to the Stokesian law 

d2r 8 
mP dt2 = ; D2&o(V, -V) IV, - VI (39) 

where mp, D, V are the mass, diameter and velocity ofthe 
particle and pp, V, are the density and velocity of the 
plasma and the dimensionless CD is the drag coefficient. 
The connection between C, and the Reynolds number 

9 
,105kg 

iiz 
30.. 

:: .J/-\ 

OO[K1 2030 Lox Km em loo03 12aIl 

FIG. 5. The dependence of viscosity of Ar-H, plasma on 
temperature. 
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was taken from the work of Beard and Pruppacher 
[13]: 

c, = $(Re) 
where 

if Re < 0.2 

if 0.2 d Re < 2 

if 2<Rec21 

1+0.189 Re0.63 if 21<Re<200. 

The numerical values for Re are calculated by the 
well known formula 

Re = I”, - “I DP, 

In the equation of motion we have neglected the 
Basset history term, because it causes no significant 
difference [12]. It has to be mentioned that the 
correction term for C, used by Lewis and Gauvin [12] 
is unnecessary if the temperature dependence of the 
plasma properties is taken into account. 

The equation of motion (39), can be rewritten in 
cylindrical co-ordinates z, r. Using (40) and the fact that 
the radial component of the velocity us is much less than 
the axial velocity component ug of the plasma we get 

dz2 

dt2 = D2p 
18rl(T,(z’ I)) [U&z, r)- g] g(Re) 

(41) 

dr2 18M&, r)) dr 
dt2 = D2p 

z dRe). (42) 

The differential equations (41), (42) have been solved 
by the Runge-Kutta method. The particle diameter 
was varied between 10 and 100 pm. The initial 
conditions for the particle motion are z(0) = 0 and 
r(0) = 4 mm. The initial velocity of the particles was 
taken to be perpendicular to the axis, and its values 
were chosen as 5,lO and 15 m s-l. 

Figure 6 shows the trajectories of the particles with 

r [mm1 

20 

I 1 

30 60 30 420 * Cmml 

FIG. 6. Trajectories of the alumina particles with different 
diameters in an Ar-H, plasma jet. The injection velocity is 

15 m s-l. 
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FIG. 7. Calculated positions of the solid/liquid interface in a 
particle and its surface temperature during its flight through 
an Ar-H, plasma jet as function of time. The particle 
diameters are (a) 100 pm, (b) 90 pm and (c) 80 pm. The 
curves 1 show the plasma temperature seen by the particle, 
the curves 2 show the position of the solid/liquid interface 
and curves 3 show the surface temperature of the particle. 

different diameters at an initial velocity of 15 m s - ‘. The 
curves m(t) at particle diameters of 80,90 and 100 pm 
are shown in Figs. 7(a)-(c). 

3.3. Numerical calculations of the solid/liquid interface 
position 

If the plasma temperature T,(t) seen by the particle in 
the plasma is known, then equation (37) can be solved 
numerically. Figure 7 shows a few results which are due 
to particles with different degrees of melting. 

The particle injected with a velocity of 15 m s- ’ and a 
diameter of 100 pm does not begin to melt. The particle 
with a diameter of 90 pm melts partly, after which it 
becomes solid again in the plasma. The particle with a 
diameter of 80 pm melts completely in the plasma. 

In Fig. 7 the curves 1 always show the plasma 
temperature seen by the particle, the curves 2 show the 
position of the solid/liquid interface and curves 3 show 
the surface temperature of the powder particle as a 
function of time. The time units of the three curves are 
not equal. 
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4. CONCLUSION 

To describe the melting of a powder particle flying 
through a plasma jet an integro-differential equation of 
motion of the melting front inside the particle can be 
determined. This equation contains the time- 
dependent plasma temperature seen by the particle as a 
boundary condition. To determine this temperature 
one needs to investigate the particle motion in a plasma. 
The equation of motion is given according to the 
Stokesian law and the temperature dependence of the 
plasma viscosity can also be taken into account. In a few 
special cases the equations can be solved numerically 
and thesolutiongives themeltingfrontpositionand the 
surface temperature of the powder particle as a function 
of time. 
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FUSION DE GRAINS DE POUDRE DANS UN JET DE PLASMA 

R&sum&Un modele numerique de la fusion de petites particules qui entrent dans un jet de plasma est ttudie 
pour p&dire les parametres optimaux de la dispersion du plasma. L’Cquation du mouvement pour l’interface 
solidejliquide dans une particule qui passe a travers un jet de plasma est dtterminee et sa solution numerique 
estdonn~dansquelquesc~parti~iers. Laforteva~ation detem~ratureet devit~ed~slejet deplasmaet 

la dependance P la temperature des parametres du plasma sont prises en compte. 

DAS SCHMELZEN VON STAUBK~RNERN IM PLASMASTRAHL 

Zusammenfaasung-Zur Vorhersage der optimalen Parameter eines Plasmastrahls wurde ein numerisches 
Model1 vom Schmelzen kleiner Teilchen, die einem freien DC-Plasmastrahl zugefiihrt werden, erarbeitet. Die 
Bewegungs~eichung fiir die Grenzflbhe fest/fliissig innerhalb eines Teilchens, das einen Plasmastrahl 
durchquert, wurde bestimmt und die numerische Losung davon in einigen speziellen Fallen angegeben. Die 
starke Temperatur- und Geschwindigkeitslnderung innerhalb des Plasmastrahls und die Temperatur- 

abhangigkeit der Plasma-Einflul3grBBen wurden beriicksichtigt. 

fIJIABJIEHME TBEPabIX YACTkILf TIPkf fIJIA3MEHHOM PACl-fbIJIEHHM 

AHBOTWIIS-&IX pacreTa OIIMMaJIbHbiX IIapaMeTpoe rIna3MeHHOrO pacIIbIJIeIiar UccJIeJIyeTca SHCJIeH- 

Hail Monenb nnaenenna ManbIx qacTmi, no~aAa~~x B CBO~OLCH~~~ crpym nna3hfbI, ~0~qaeM~ Ifar- 

Perot ra3a nocToffmibIM TOKOM. Hafineao ypaBHewie ABmiceEnix rpawnw pamena +a3 NIn SacTUubI, 

IiarpeaaeMoti nna3MeaHoii cTpyei%, a ero wcnemioe perueaae nano n.nr HeKoTopbIx vacwblx cnyqaea. 

YWITbIBaJIUCb CIUIbHbIe U3MeHeHUR TeMuepaTypbI A CKOpOCTlz a IIJIa3MeHHOii CTpye EI 3aBACAMOCTb 

napaMerpoa nna3MbI OT TeMnepaTypbI. 


