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Melting of powder grains in plasma spraying
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Abstract—A numerical model of the melting of small particles entered in a free DC plasma jet was studied to

predict the optimal parameters of plasma spraying. The equation of motion for the solid/liquid interface inside

a particle passing through a plasma jet was determined and its numerical solution was given in some special

cases. The strong temperature and velocity variation inside the plasma jet and the temperature dependence of
the plasma parameters were taken into account.

1. INTRODUCTION

InTHE use of plasma spraying the basic condition is that
the particles become fully molten but not overheated
during their flight. In such cases the powder particles
can be spread on the substrate and the porosity of the
coated depositis low. Therefore it is important to know
the conditions of full melting of a particle in plasma.
One possibility to take into account these conditions
is to suppose that the thermal conductivity of powder
grains is so high that the temperature gradient inside
the particles can be neglected [1-5]. According to
Houben [5] this assumption can be used when
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where x and «, are the thermal conductivity of the
powder and the plasma, 7, and T, are the temperatures
of the plasma and the powder surface, respectively, and
T, is the room temperature. This connection is not
satisfied, however, for many materials (e.g. Al,O,).

Another possibility is the numerical determination of
the temperature distribution, T(r, t), inside the particle
using the finite-difference method [6-8].

In practical plasma spraying one does not need to
know the complete temperature function, T{r, ¢}, it is
enough to know the time-dependent position of the
phase boundary, #(¢) and the temperature at the particle
surface, T,(¢) during the dwell time. The surface tem-
perature of the particles can even be measured [9, 10],
so that the calculated results can be compared to the
measured values.

In this paper we give the equations of the phase
boundary position, 5{t), the particle surface tempera-
ture and their numerical solutions for some cases
because this way seems to be simpler than the
computation of T'(r, 1) inside the particle.

In order to describe the melting of particles we have
to know the temperature and velocity distribution in
the plasma jet, because knowing them the motion of
powder grains and the plasma temperature seen by the
particle can be determined as a function of time. In this
paper the description of the particle motion is given by
taking into account the dependence of the temperature

and velocity on position and of the viscosity and density
on temperature. Scott and Cannel [11] made
calculations with similar conditions for the particle
motion in plasma.

2. EQUATION OF POSITION OF
PHASE BOUNDARY

2.1. Constant heat transfer coefficient
We have used the following assumptions:

(i) The effect of convection as a heat transfer
process in the liquid phase is neglected.

(ii) The particles have spherical symmetry.

(il) The material constants of powder grains
(Cp, p, k) can be represented by their mean
values.

The temperature distribution within the particle is
governed by the equation

aT « &
Pcp*g;—7ﬁ("7')=0 ¥
with the boundary condition due to the heat balance
equation at the particle surface, ie.

arT
K 5’; = a(T'g(t)_ T)Ir::ro (3)

where « is the heat transfer coefficient and T.(t) is the
temperature experienced by the particle.

The symmetry condition in the centre of a particle
can be written as

aT
or
Another boundary condition is due to the heat balance

at the moving solid/liquid interface and can be written
in the form:

oT
K

or
where L is the latent heat of fusion, 8(x) the Heaviside
function and ¢ is the time when the surface temperature

- 0. (4)

r=0

oT
....K.._——

dy
= Lp-—6{t—t 5
-0 ar pdt (t—1to) (5)

r=n(t)+0
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Cp drag coefficient

specific heat

D  diameter of powder grain

F’ non-dimensional temperature

F, non-dimensional gas temperature
L latent heat of fusion

mass of particle

Nusselt number

Pr Prandtl number

g heat flux

r  radial coordinate

ro radii of particle

Re Reynolds number

t time

T temperature

x' non-dimensional radial coordinate, r/r,

NOMENCLATURE

z  cylindrical coordinate.

Greek symbols
o  heat transfer coefficient
B non-dimensional solid/liquid interface,
n(0)/ro
n(t) solid/liquid interface position
w(T) viscosity
k  thermal conductivity
p  density
t  non-dimensional time, - x/pC,ri.

Subscripts
g gas
s  surface
I room.

of the particle has just reached the melting point, i.c.
T(r07 tO) = Tm' (6)

Finally, the temperature at the solid/liquid interface is
equal to the melting point, i.e.

T(n(®), 1) = T ™

The heat transfer equation (2) and the boundary
condition (5) can be written in a single equation
introducing a heat source by the definition

d
4= Lp 5 6(t—Lo)o(r—(0) ®

where § is the Dirac & function. With the use of this
expression, equations (2) and (5) can be written as
dT « 82
————(T)=gq.
o g raﬂ(r) q )

Let us introduce the dimensionless variables

X =— (10)
To
tx
Bx) = @ (12)
C, ..
Fofr) = A (T,O-To) (13)
Fn=*(T,~T) (14
C
F(x, ) = f (T(r,)—T)x (15)
and the Nusselt number
ary
Nu=—. (16)
K

Using these quantities the equations (3), (4), (6) and (7)
get the following forms:

oF  0°F d

o bt L sx—p) (17

oF'

5o = (1= NWF + NuFo(l=y (13)
F(0,1)=0 (19
F(l,7) =0 (20)
F'(B(z),7) = 0. @y

To solve these equations let us suppose the solution in
the form

F'=F+NuFy(t)f(x) (22)
where f(x) is defined by
(1—e—x)*
_ ———25—(1—Nu)ez if x>1-—¢
flg= 0 if 0<x<l—c
(23)

This functionis shownin Fig, 1.If¢ « 1then f(1) ~ &/2.

f(x) i
£
/ 2
0 1-€ 1 X
2, —_——
d“f E

dx2

0 1-£ X

FiG. 1. The f(x) and d?f/dx? functions (see text).
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The second derivative of f(x) is given by
2 1

={ 2%—(1—-Nue ¢
0 if 0<x<l1l—e

d?f if x>1—¢

dx?

It can be seen that f(x) « d3f/dx?ife « 1.Substituting
F’ into (17)}(19) we get

OF &*F dB
oA Ot —1o)x P O(x—B(r)
2
FNuF 3 = Gl (24

oF
- =({1—=Nu)F|,-, (25)
Ox
F@O0,7)=0 (26)
Using the complete orthonormal system
1 —-1/2
U,(x) = sin k,x* (f sin? k,x dx> .@n
0
F can be given by
Fx,7)= Y C,@Uyx). (28)
n=0

Because of the boundary conditions (25) and (26), k,
satisfies the equation

1
T AT, kn = tan (k,,),

1—Nu 29)

the graphic solution of which is shown in Fig. 2.
Multiplying equation (24) by U,(x) and integrating
between 0 and 1 and taking ¢ — 0 we get the following
equation for C(7),

dc

d
& kG, = b0 L U,
7 dr

+NuFo(t)u,(l) = G,(z). (30)

Its solution is

Ciln) = {C..(O) +J‘( G.(9) e"f'dt}e"‘nz’. (31

o

where C,(0) can be determined from the initial
condition. If T(r, 0) = T, then
U.1).

C,(0) = Jl F(x, O)U,(x) dx = — 121V (32)

0 ki
Using (28) and (31) we get F(x, t) as a function of (1)
which can be given by using condition (21) as

Y UB()C,(z) = 0. (33)
n=0
Introducing the quantity
A 3o )= T U,U o) e (34)

w=0

and using equation (31), equation (33) leads to the

tgx

FiG. 2. The solution of the transcendent equation (29).

following integro-differential equation:
1
f F(x, 0)A(x, B(z), 1) dx
0
max({t, to} d ﬂ
+ J B m AB@), (1), t— 1) dt

1]

+Jt NuFo(t)A(L, B(6), 1—1)dt = 0. (35)

0

On the basis of equations (28) and (31) the surface
temperature is given by

1
F(l,7)= I F(x,0)A(x, 1, 7) dx

0

max(z, 1o} d
+'[ ﬁ(t)gttz A(B(t), 1,t—1t)dt

%o

+ft Nu Fy()A(1, 1,t—8)dt  (36)
0

7, can be determined from the implicit equation,

F(1,75) = 0.

2.2. Temperature-dependent heat transfer coefficient
In the previous section the heat transfer coefficient, «,
was supposed to be constant but a usually depends
strongly on the plasma temperature. The integrated
thermal conductivity of the plasma gas , is defined by

Ry = (Tg—Ts)*JT' ky(T) dT

Ts

Ranz and Marshall [10] give the following approxim-
ation for a

o« = ©(2+0.6Re'? Pr'/3)/2r,.

If the Reynolds number is not too high, then o = &, /rg
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Fic. 3. The Nusselt number as a function of plasma
temperature for alumina particles in an Ar-H, plasma.

so the Nusselt number

Using the data given in the literature [14, 15] the
connection between Nuand the plasma temperature, T,
for alumina particles in Ar-H, plasma is shown in Fig.
3. These values of the Nusselt number were used in the
numerical calculations discussed in Section 3. Taking
into account that the heat transfer coefficient depends
on temperature, «(7;) can be approximated by a step
function &(T,). In the intervals where the step function is
constant equation (35) remains still valid with
exchanging the variables F(x, 0) - F(x, t,) and tak-
ing 1o —max {t,,1,} where 1, is the time moment
of the discontinuity of &(T(r)). The denotation
T, — max {1y, 7,} means that t, must be exchanged by
the maximum value element of the set {z,, ,}. So equa-
tion (35) is given in each interval 7, < 7 < 7,,, by

J ' F(x, ) Ay, B8 1) dx

max{t, tn, To}
; J 80 % 40, ), -1yt

max{tn, to} dt

+Jr Nu,Fo(t)A,(x, B(t), t—1) dt. (37)

n

The index n denotes the intervals where the value of the
Nusselt number is Nu, The surface temperature
distribution is then given by

1
F(X, T) = J\ F(‘C", xO)A(x’ X0s T) de
0

max{t, tn, To} d
; j BOSD A,(x, B, 1) do

max{tn, to}
+J Nu, F,()A,(x,1,7—t)dt (38)

where (1) has to be calculated from equation (37).

3. NUMERICAL RESULTS

3.1. Plasma parameters
In the numerical calculations the melting of the
particles was investigated by using the temperature and
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F1G. 4. Temperature (a) and axial velocity (b) isocontours

of an argon hydrogen DC plasma jet at P = 29 kW, D,, =
75 Nl min ™!, Dy, = 37 Nl min ™%,

velocity distribution in an Ar~H, plasma jet measured
by Vardelle et al. [7] (Fig. 4). The power of the plasma
generator was 29 kW with a flow rate of 75 Nlmin ™! of
Ar and of 37 Nl min~! of H,. The dependence of the
viscosity of the Ar-H, plasma on temperature was
approximated between 2000 and 12000 K by an
analytical function using the data given in ref. [14]:

T—T,\®
n(T)=noeXP<— = ‘)
2

where T,, Ty, no and a are constants (Fig. 5).

3.2. The motion of the particles
The equation of particle motion in plasma has the
following form according to the Stokesian law
d’r 8
my F = ; szgCD(Vg - V) lVg - Vl (39)
wherem,, D,V are the mass, diameter and velocity of the
particle and p,, V, are the density and velocity of the
plasma and the dimensionless Cpis the drag coefficient.

The connection between Cp, and the Reynolds number

~5kg
1022
1 *O%s
30
201
101
0" 2000 00 6000 8000 10000 1200  T[K]
F1G. 5. The dependence of viscosity of Ar-H, plasma on
temperature.
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was taken from the work of Beard and Pruppacher

[13]:

Co =2t g(Re) o)
where
1 if Re<02
J(Re) = 1+0.1 Re®*? if 02<Re<?2
1+0.11 Re®®1  if 2<Re<2l
1+0.189 Re®63 if 21 < Re < 200,

The numerical values for Re are calculated by the
well known formuia

_IVy=VIDp,
n

In the equation of motion we have neglected the
Basset history term, because it causes no significant
difference [12]. It has to be mentioned that the
correction term for Cp, used by Lewis and Gauvin [12]
is unnecessary if the temperature dependence of the
plasma properties is taken into account.

The equation of motion (39), can be rewritten in
cylindrical co-ordinates z, r. Using (40) and the fact that
theradial component of the velocity v, is much less than
the axial velocity component u, of the plasma we get

dz2  18y(T.(z, d
& _ _ﬂ(D%(:_r)l [Ug(z, r— d—j:l g(Re)

Re

dr?
41

dr?  18q(Ty(z, 1) dr

— Re).
D% dtg( e)

e ™ “2)
The differential equations (41), (42) have been solved
by the Runge-Kutta method. The particle diameter
was varied between 10 and 100 ym. The initial
conditions for the particle motion are z(0) =0 and
r(0) = 4 mm. The initial velocity of the particles was
taken to be perpendicular to the axis, and its values
were chosen as 5,10 and 15ms™ 1.
Figure 6 shows the trajectories of the particles with

30 60 90 420 x [mm]
FiG. 6. Trajectories of the alumina particles with different
diameters in an Ar-H, plasma jet. The injection velocity is
15ms 1.
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F1G. 7. Calculated positions of the solid/liquid interface in a
particle and its surface temperature during its flight through
an Ar-H, plasma jet as function of time. The particle
diameters are (a) 100 ym, (b) 90 ym and (c) 80 um. The
curves | show the plasma temperature seen by the particle,
the curves 2 show the position of the solid/liquid interface
and curves 3 show the surface temperature of the particle.

different diameters at aninitial velocityof 15ms 1. The
curves T(z) at particle diameters of 80, 90 and 100 um
are shown in Figs. 7(a)}-(c).

3.3. Numerical calculations of the solid/liquid interface
position

If the plasma temperature T;(t) seen by the particle in
the plasma is known, then equation (37) can be solved
numerically. Figure 7 shows a few results which are due
to particles with different degrees of melting.

The particleinjected with a velocityof 15ms ™' and a
diameter of 100 um does not begin to melt. The particle
with a diameter of 90 um melts partly, after which it
becomes solid again in the plasma. The particle with a
diameter of 80 um melts completely in the plasma.

In Fig. 7 the curves 1 always show the plasma
temperature seen by the particle, the curves 2 show the
position of the solid/liquid interface and curves 3 show
the surface temperature of the powder particle as a
function of time. The time units of the three curves are
not equal.
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4, CONCLUSION

To describe the melting of a powder particle flying
through a plasma jet an integro-differential equation of
motion of the melting front inside the particle can be
determined. This equation contains the time-
dependent plasma temperature seen by the particleasa
boundary condition. To determine this temperature
one needsto investigate the particlemotionin a plasma.
The equation of motion is given according to the
Stokesian law and the temperature dependence of the
plasma viscosity can also be taken into account. In a few
special cases the equations can be solved numerically
and the solution gives the melting front position and the
surface temperature of the powder particle as a function
of time.
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FUSION DE GRAINS DE POUDRE DANS UN JET DE PLASMA

Résumé— Un modéle numérique de 1a fusion de petites particules qui entrent dans un jet de plasma est €tudié

pour prédire les paramétres optimaux de la dispersion du plasma. L'équation du mouvement pour I'interface

solide/liquide dans une particule qui passe 4 travers un jet de plasma est déterminée et sa solution numérique

estdonnée dans quelques cas particuliers. Laforte variation de température et de vitesse dansle jet de plasmaet
la dépendance & la température des paramétres du plasma sont prises en compte.

DAS SCHMELZEN VON STAUBKORNERN IM PLASMASTRAHL

Zusammenfassung—Zur Vorhersage der optimalen Parameter eines Plasmastrahls wurde ein numerisches

Modell vom Schmelzen kleiner Teilchen, die einem freien DC-Plasmastrahl zugefiihrt werden, erarbeitet. Die

Bewegungsgleichung fiir die Grenzfldche fest/flissig innerhalb eines Teilchens, das einen Plasmastrahl

durchquert, wurde bestimmt und die numerische Losung davon in einigen speziellen Fillen angegeben. Die

starke Temperatur- und Geschwindigkeitsinderung innerhalb des Plasmastrahls und die Temperatur-
abhingigkeit der Plasma-EinfluBgr6Ben wurden beriicksichtigt.

TUJIABJIEHUE TBEPABIX YACTHUL ITPH IJIASMEHHOM PACITBIJIEHHU

Aunoranss— 15 pacyeTa ONTHMAIBHbIX MapaMETPOB MUIa3MEHHOTO PAaCHbUICHHS HCCAEAYETCS HHMCHEH-

Has MOZENb TUIABNCHHS MasbiX YaCTHI, NOTNAZAIOLMX B cBOBOAHYIO CTPYIO MIa3Mbl, TOMYYaEMYyIO Har-

peBOM ra3a nocTosHHBIM TokoM. HalizeHo ypaBHeHHe IBIDKEHMA IpaHMuB! pasgena a3 [uid YacTHIEL,

HarpeBaeMoil IIa3MEHHOM CTpyell, 4 ero YMCICHHOe PEIIEHHE JAHO TS HEKOTOPhIX YACTHBIX CIyHaes.

VYATHIBAIHCH CHJIBHBIE M3MEHEHHS TEMIEepaTypbl ¥ CKOPOCTH B NJIAa3MEHHOH CTpye M 3aBHCHMOCTb
napaMeTpPOB I1a3Mbl OT TEMIIEPATYPbL



